• page_head_Bg

Advancing Water Quality Monitoring with Photonic Sensing Technologies

As global environmental challenges threaten water quality, there is a growing demand for efficient monitoring solutions. Photonic sensing technologies emerge as promising real-time and precise water quality assessment tools, offering high sensitivity and selectivity in diverse aquatic environments.
Principles of Photonic Sensing Technologies
Photonic sensing technologies use fundamental light-matter interactions, such as transmission and reflection, to identify containments or key water quality indicators like total suspended solids (TSS).

These sensors utilize light sources like LEDs or lasers to illuminate water, where the size and composition of impurities affect light interaction, causing changes in light intensity or wavelength.

These changes are then recorded using various detection methods, including photodiodes, phototransistors, or charge-coupled devices (CCDs), which measure the light’s intensity after interacting with the contaminants. Optical fibers are often employed to direct the light to and from the water sample, allowing for remote or distributed sensing.

In addition to measuring light transmission and reflection, some photonic sensors leverage specific optical phenomena to detect contaminants. For example, fluorescence sensors excite fluorescent molecules in the water with light of a particular wavelength and measure the intensity of the emitted fluorescence, which can be correlated with the concentration of specific contaminants.

Conversely, surface plasmon resonance (SPR) sensors monitor variations in the refractive index of a metal surface resulting from the binding of target molecules, providing a label-free and real-time detection method.

We can provide water quality sensors with various parameters for various application scenarios, as follows



Post time: Jun-11-2024